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Abstract

This paper presents a generic modelling for the time-dependent analysis of composite steel-concrete beams with par-
tial shear interaction that occurs due to the deformation of the shear connection. The time effects considered in this
modelling are those that arise from shrinkage and creep deformations of the concrete slab, and these effects are mod-
elled using algebraic representations such as those of the age-adjusted effective modulus method (AEMM) and the mean
stress method (MS), which are viscoelastic models for concrete deformation that can be stated algebraically. The generic
model lends itself to closed form solutions for the analysis of composite beams subjected to a generic applied loading
under a variety of end conditions. In this paper, the generic model is applied for the time-dependent analysis of com-
posite beams that are simply supported and encastré, and to a propped cantilever, that are subjected to uniformly dis-
tributed loading and shrinkage deformations. Various representations of the structural behaviour of these beams are
given in closed form which can also be used to benchmark available modelling techniques, i.e. finite element and finite
difference formulations, which require a spatial discretisation to be specified as well as the time discretisation to perform
a time analysis.
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1. Introduction

Steel-concrete composite T-beams are a popular and economical form of construction in both buildings
and bridges. This paper will focus on their behaviour at service loads, which is highly affected by time
effects, such as creep and shrinkage of the concrete slab.

The time-dependent analysis of composite beams with partial shear interaction (PI) requires the global
behaviour of the structural system to be considered, in deference to the case of full shear interaction where a
cross-sectional time analysis can be performed without investigating the global behaviour as presented by
Gilbert (1988), Bradford and Gilbert (1989), and Ghali and Favre (1994). In the early 90s several research-
ers investigated the time-dependent behaviour of composite beams with PI; some of the first studies were
published by Bradford and Gilbert (1992) and by Tarantino and Dezi (1992). Bradford and Gilbert (1992)
utilised a boundary value modelling approach based on the shooting technique which they applied for the
time analysis of simply supported beams using the age-adjusted effective modulus method (AEMM). Tar-
antino and Dezi (1992) presented an analytical model based on the finite difference method while using the
step-by-step procedure to model the time-dependent behaviour of the concrete. This approach was based
on the flexibility method. The following year a finite element formulation based on a 10 degrees-of-freedom
finite element was proposed by Amadio and Fragiacomo (1993).

Recently, Dezi et al. (2001) investigated the interaction of shear-lag, PI and creep effects, and their
approach was based on the finite difference method. Kwak and Seo (2002) proposed a numerical model
which, after sub-dividing the beam into several segments, applies force equilibrium equations and strain
compatibility conditions at each node assuming a piecewise linear distribution of the bending moment
and of both the curvature and the strain in the bottom fibre of the concrete element due to creep deforma-
tions, while Fragiacomo et al. (2002) investigated the viscous behaviour of composite beams with normal
and high performance slabs.

This paper intends to propose a formulation for the time-dependent analysis of composite beams with
PI, referred to as the general method of time analysis, where the time-dependent behaviour of the concrete
is modelled using algebraic methods, such as the age-adjusted effective modulus method (AEMM), the
mean stress method (MS) and the effective modulus method (EM). The EM method is not considered in
detail as, differently from the AEMM and MS methods, it can be simply applied using the same modelling
procedures developed for the instantaneous analysis (already available in literature) while using the effective
modulus for the concrete instead of its elastic one. On the other hand, the AEMM and MS methods require
two analyses to fully complete the time-dependent analysis, which are an instantaneous analysis (i.e. at time
to, where 1, is defined as the time of first loading) and an analysis that is performed at one step in time (at
the prescribed time ).

The formulation presented produces analytical results for beams with a number of support conditions,
with no discretisations along the beam being introduced in the solution process. This is demonstrated for
the cases of simply supported beams, propped cantilever beams and fixed ended beams subjected to a uni-
formly distributed load and to shrinkage deformation for which closed form solutions, which appear not
to have been previously published in the open literature, have been derived. The correctness of these
closed form solutions has been validated against the results of the direct stiffness method (DSM) as, sim-
ilarly to the closed form solutions presented herein, it requires only one discretisation (i.e. in the time
domain) to perform time analyses based on the algebraic methods instead of the two discretisations
(i.e. one in the time domain and one in the spatial domain along the beam axis) required by other
time-dependent modelling techniques (Ranzi, 2003). These closed form solutions can also be used to
benchmark the accuracy of other modelling techniques which require a spatial discretisation (along the
member length) as well as the time discretisation. This has already been briefly carried out by Ranzi
et al. (2004a), where results obtained using the finite difference method and the finite element method
have been considered.



3772 G. Ranzi, M. A. Bradford | International Journal of Solids and Structures 43 (2006) 3770-3793
2. Partial interaction analysis

The general method of time analysis presented in this paper represents a continuation in the time domain
of the formulation described by Ranzi et al. (2003) for the instantaneous analysis of composite beams with
PI. The modelling is based on the composite cross-section shown in Fig. 1 and, for simplicity and without
any loss of generality, a single span beam is considered as shown in Fig. 2. The pattern of loading consid-
ered produces a variation of the bending moment M(z) and of the axial force N(z), whose variations are not
necessarily known initially if the beam is statically indeterminate. For simplicity, M(z) and N(z) will be
referred to as My and N, at time ¢y, and as M and N, at time ¢. The subscripts ‘0’ and ‘%’ are used through-
out this paper to distinguish between actions and cross-sectional properties calculated at time ¢y and at time
t respectively.

The composite beam considered is assumed to occupy the spatial region V= 4 - [0, L], where A4 repre-
sents the composite cross-section shown in Fig. 1 which is an arbitrary cross-section that is symmetric about
the plane of bending, while [0, L] is defined along the beam coordinate z (which is perpendicular to the
cross-section at any location along the beam length, and with z € [0, L]). The composite beam is comprised
of a top and a bottom element, which represent the reinforced concrete slab and the steel joist respectively,
and these are referred to as elements 1 and 2 respectively. The composite cross-section is thus represented
as A = A, U A,, where 4, and A, are the cross-sections of elements 1 and 2 respectively; A; is further sub-
divided into 4. and A4, which represent the areas of the concrete component and of the reinforcement
respectively, while 4, represents the cross-section of the steel joist only and it is denoted as A;.
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Fig. 1. Composite cross-section (a) and strain diagrams at time #, (b) and 7 (c).
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Fig. 2. General single span beam at time #, and at time ¢.
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Fig. 3. Free body diagram of the top element at time 7, and at time ¢.

For continuous beams, the expressions derived can be applied to each span utilising the appropriate sta-
tic and/or kinematic boundary conditions and enforcing compatibility to be satisfied between adjacent
spans (i.e. at support locations). Similarly, the presence of point loads would require the procedure pre-
sented to be applied between point loads and/or supports (therefore sub-dividing each span into beam seg-
ments) utilising the appropriate static and/or kinematic boundary conditions and enforcing that
compatibility is satisfied between adjacent segments of the beam (i.e. at support and point load locations).
For generality, the model is derived with reference to an arbitrary axis located at a distance y, below the top
fibre of the cross-section from which the cross-sectional properties of the beam are defined. As the axial
displacement is controlled at the level of the reference axis, it will be assumed, without any loss of gener-
ality, that the reference axis is located in the steel joist (i.e. bottom element) as occurs in real beams. It is
also assumed that the steel joist, the steel reinforcement and the shear connection behave in a linear-elastic
fashion, while the concrete behaviour is modelled by means of more complex algebraic representations.

In a similar way to Newmark’s highly cited model (Newmark et al., 1951), the curvature is assumed to be
the same in the top and bottom elements which leads to a condition of no vertical separation, while plane
sections are assumed to remain plane with a slip discontinuity at the interface between the top and bottom
elements.

The model is constructed at time f#, and at time ¢ based on an unknown strain diagram, which requires
three parameters to be fully defined, which are the strain in the top fibre of the cross-section &y, the cur-

vature p, and the slip strain % (where y = 0, k at time #, and ¢ respectively). For simplicity % will be denoted

as §,. The three equations utfldzised to solve the problem are those for horizontal equilibrium at the composite
cross-section, rotational equilibrium at the composite cross-section and horizontal equilibrium of a free
body diagram of the top element as shown in Fig. 3.

In the following the material properties considered in the modelling are firstly defined. The formulation
of the modelling technique applied to both instantaneous and time analyses is then presented, and closed
form solutions are derived for the cases of simply supported beams, propped cantilever beams and fixed
ended beams subjected to a uniformly distributed load and to shrinkage deformation. These are then val-
idated against the results obtained using the direct stiffness method (DSM).

3. Material properties

The generic composite cross-section considered in this paper is formed by a concrete component, rein-
forcing bars, a steel joist and a shear connection as shown in Fig. 1. The steel reinforcement and the steel
joist are assumed to behave in a linear-elastic fashion at times 7y and ¢ as

o = Betry = Exlfoy + (v + 700 (1a)
05 = Eses; = Es &, + (v +J’0)p~,v + 3] (1b)

where y is the vertical coordinate from the reference axis, o, and ¢, are the generic stress and strain in the
steel reinforcement, o, and &, are the generic stress and strain in the steel joist, and E; and E, are the elastic
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moduli of the steel joist and reinforcement respectively. The shear connection is also assumed to behave in a
linear-elastic fashion so that

¢, = ks, 2)

where ¢, is the shear flow per unit length (shear flow force), k is the shear connection stiffness (force per
length?), and s, is the slip.

The behaviour of the concrete is assumed to be time-dependent, and it is modelled using the AEMM and
MS methods and, therefore, incorporating all the limitations of these algebraic formulations (CEB, 1984;
Bazant, 1972; Trost, 1967). These have been recommended by Dezi et al. (1996, 1998) for the analysis of
composite beams based on a parametric study carried out benchmarking the results obtained using different
algebraic representations against those using the step-by-step method. In particular, they recommended the
use of the AEMM method to model the time-dependent behaviour of the concrete when the structural sys-
tem is subjected to external loads, while using the MS method to consider shrinkage effects. It is also
assumed that the time-dependent behaviour of the concrete is identical in both compression and tension,
as recommended by Gilbert (1988) and Bazant and Oh (1984) for stress levels in compression less than
about one half of the compressive strength of the concrete, and for tensile stresses less than about one half
of the tensile strength of the concrete; and so the results obtained using the proposed approach are assumed
to be acceptable from a qualitative and quantitative viewpoint when the calculated stresses remain in this
stress range. Nevertheless, when the calculated stresses are outside this range the results might still be mean-
ingful from a qualitative viewpoint, for example in comparing the effects of different cross-sectional prop-
erties. The time-dependent behaviour of the concrete in both compression and tension is then defined at
time 7o and at time ¢ as (CEB, 1984; Bazant, 1972)

0o = Ececr = Ecléoo + (v + o) pol (3a)
Ock = Ee(gck - lc;sh) + (770—00 = Ee[EOk + (y +yo),0k] + ¢0C0 — Eceq (Sb)
and
-1 E
(Z) _ ¢0(th0)[}f(tat0) }; L= c0 (4a7b)
1 +X(t710)¢0(t7t0) 1+X(tat0)¢0([at0)
Eq 1
Eco*r(()lfo) T oltto) AEMM
ABI)=0 054058 (L 1) Ms (%)
2+ 0. do(t:t0) (E_ck - E_cl))

where o, and &, are the stress and strain in the concrete component, £y and E are the elastic moduli of
the concrete at time 7y and at time ¢ respectively, E. is the age-adjusted effective modulus, &g, is the shrinkage
strain at time ¢, y(¢, to) is the aging coefficient, ¢(z, 7o) is the creep coefficient defined as the ratio between the
creep strain at time ¢ and the initial strain at time ¢y, and r(¢, ¢y) is the relaxation function. The representa-
tion of the second of Eq. (4¢) allows the MS method to be considered as a particular case of the AEMM
method. It is worth noting that Eq. (4c) becomes exact if the stress and strain histories are linear combina-
tions of histories obtained in the creep and relaxation problems (Bazant, 1972); this is not the case for the
concrete slab in a steel-concrete composite beam (Trost, 1967). Also, unlike the MS method, the AEMM
method requires the knowledge of the relaxation function r(¢, ty).

4. Instantaneous analysis at time ¢,

The modelling procedure proposed for the instantaneous analysis of composite beams is described
briefly in this section, with a detailed derivation being given by Ranzi et al. (2003). For ease of reference
all notation is defined in Appendix A.
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4.1. Horizontal and rotational equilibrium

Horizontal and rotational equilibrium are established by equating the internal actions (i.e. N,y and M)
to the external ones (i.e. Ny and M) as

Nijg=Nig+ Ny =Ny, My=M, (5a,b)
where the internal actions are determined as

Mi() = /yaodA = BEO§00 +IEOIOO +yOBE()p0 +BE20$0 (63)
4

Ny = / o9dA = AEIOEOO + BEl()po +y0AEmp0 (6b)
4,

N20 = / () d4 = AEZOEOO +BEzop0 +yoAl~?20p0 +AE205‘0 (60)
As

and N,y and M, are the internal axial force and moment resisted by the composite cross-section at time ¢,
Njp and N, are the internal axial forces resisted by the top and bottom elements respectively (i.e. elements 1
and 2) at time ¢, 0y is the generic stress in the composite cross-section at time ¢y, £y, po and §, are the strain
in the top fibre of the composite cross-section, the curvature and the slip strain respectively at time ¢y, while
the cross-sectional properties are defined in Appendix A.

Based on Eq. (5a) the strain in the top fibre of the cross-section &y can be expressed as a function of the
other two unknowns, which are the curvature p, and the slip strain $g, as

BE() —|—y0AEO AE20 . 1
&0 = — =

— = +TN 7
AE, Po AL, 0 AL, 0 ()

Substituting Eq. (7) into Eq. (5b), the curvature p, can be expressed as a function of the unknown slip strain
So as

Po por) |:AEOM() — BgoNo + (BE()AEZ() —BE20A50)$0:| (8)

 AEJE, — BE,
The axial force resisted by element 1, which will be required in the following, is determined substituting Egs.
(7) and (8) into Eq. (6b) as

Nio = q10Mo + g2No + 3050 )
where g0 (i = 1,2,3) are defined in Appendix A.

4.2. Horizontal equilibrium of a free body diagram of the top element

The slip strain is then obtained by enforcing horizontal equilibrium of a free body diagram of the top
element at time 7, as shown in Fig. 3, which can be written as:

dNg g = dNo
&z T
where N is the axial force resisted by the top element at time #,. Eq. (10) represents the governing differ-

ential equation of the PI problem at time 7,. Substituting Eq. (9) into Eq. (10) this can be re-arranged in the
following compact form as

+kso =0 (10)
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~ d2S0 dM

dn
OC()@—/CS 0

0
_ 11
0= %~ + o0 i (11)
Eq. (11) can be solved for the slip and slip strain as the sum of a general solution corresponding to the
homogeneous differential equation sy  and a particular solution sy p as

So = So.u + So.p = C10€"" + Cre ™" + 59 p (12a)

S0 = So.u + So.p = pgC10€"* — pyCro€ ™% + So.p (12b)

in which Cj (i=1,2) are constants of integration obtained by enforcing the static and/or kinematic
boundary conditions for the beam analysed, and the actual expression for sy » depends on the applied
loading conditions. Once the slip and the slip strain are obtained from Eq. (12), the other variables
defining the strain diagram can be determined from Egs. (7) and (8). At this point is then possible to
obtain the expressions of all other variables describing the structural behaviour of the beam at time
to.

4.3. Actions resisted by the concrete component at time t,
The stress state at time 7 is determined as a function of the stress state at time 7, as shown in Eq. (3b). For

the purpose of the present model, the stress state at time ¢, is considered in the formulation in terms of the
moment M, and axial force N resisted by the concrete component at time #,, which are calculated as

My = / Y00 d4 = deig€00 + PeaPo (13a)
A

c

Ne = / 00 d4 = 30800 + PeaoPo (13b)
A

where A4, is the area of the concrete component, and &y, and p, are the strain in the top fibre of
the composite cross-section and the curvature along the beam determined from the instantancous
analysis.
5. Time analysis
5.1. General

The formulation of the general method of analysis dealing with the time analysis is presented in this sec-
tion, while its detailed derivation has been outlined by Ranzi (2003). For ease of reference all notations are
defined in Appendix A.

5.2. Horizontal and rotational equilibrium

The internal actions resisted by the composite cross-section at time ¢ are

Ny = / 04 d4 = AE i + BE ip, +yOAE1kpk + @Noy — AcE ety (14a)
A

Ny = / 6, dA = AE &0 +BE2kpk +y0AE2kpk + AE sy (14b)
A
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M,—k = /yO'k d4 = BEk:‘IOk +1Ekpk +y0BEkpk — BcEegsh + MC()&) + BEQkS‘k (14C)
A

where o is the generic stress calculated at time ¢ at the composite cross-section. Horizontal and rotational
equilibrium at the composite cross-section is then enforced as

Nig =Ny + Ny = Nig My =My (15a,b)

It is worth noting that the expressions for the internal axial force and for the internal moment are a function
not only of the strain state at time 7 due to the applied loading, but also of the stress state occurred at time #,
and of the shrinkage deformation at time z, as depicted in Eqgs. (14a) and (14c).

The expression for the strain in the top fibre of the cross-section &y can be obtained from Eq.
(15a) as

B BE; + y,AE #No AE.  AEy. 1
Eop = — k+;y() k,()k_q)/vo"' =~ &sh — ~2ksk TN]( (16)
AE} AE, AE; AE} AE,
while the curvature p; can be obtained substituting Eq. (16) into Eq. (15b) as
1 T T~ T~ ~ T~ ~ = = = = .
R — [AEkMk — BEiN; — AE;Myp + BE Ny + (BEkAEzk - BEzkAEk>sk
AEIE, — BE,
+ (AE,J;CEe - BEkAcEe) gsh} (17)

Substituting Eqgs. (16) and (17) into Eq. (14a) yields the axial force resisted by the top element at time
t as

N = quMi + Nk + q35 — M o0 ® — guNo@ + Sharesn (18)

5.3. Horizontal equilibrium of a free body diagram of the top element

Based on Eq. (15) the PI problem can be expressed as a function of only one unknown (i.e. the slip
strain). The additional equation utilised in this approach to derive the expression for the slip strain is
the one of horizontal equilibrium at time ¢ of a free body diagram of the top element as shown in Fig.
3. This can be stated as

dN _dNy

dz —I—qk—?—&—ksk:O (19)

where Ny is the axial force resisted by the top element at time 7, ¢ is the shear flow force at time #, and s, is
the slip along the beam at time z.
Eq. (19) represents the governing differential equation of the PI problem and can be re-arranged based
on Eq. (18) in the following compact form as
~ dZSk k de - ndo de - cho
O — —ksy = o —— — o, O —— — o
iz Sk ks kP dz 4z 2% P dz
The general solution of the governing nonhomogeneous linear differential equation for the slip can be pro-
duced routinely again as the sum of a general solution corresponding to the homogeneous differential equa-
tion sy ;7 and a particular solution s;.p as

(20)

Sp = Sk + Skp = Cpeh™ 4 Cye™ ™ 4 5p.p (2la)

Sk = Sk + Skp = W Cre™ — 1 Core™ + 51 p (21b)
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in which Cy (i=1,2) are constants of integration derived by enforcing the static and/or kinematic
boundary conditions for the beam analysed, and the expression for s;.p depends on the applied load-
ing conditions. Once the slip and slip strain are determined from Eq. (21), the expressions for the
other unknowns (i.e. the curvature and the strain in the top fibre of the cross-section) can be deter-
mined from Egs. (16) and (17).

6. Structural behaviour at times 7, and ¢

Based on the formulation presented in the previous sections for the instantaneous analysis and for the
time analysis, the structural behaviour of a composite beam can be fully defined.

Once the slip and slip strain are obtained from Eqs. (12) and (21) for the analyses at time ¢, and at time ¢
respectively, the expressions for the other two unknowns utilised in the formulation to define the strain dia-
gram (i.e. the curvature and the strain in the top fibre of the cross-section) are determined based on Egs. (7),
(8), (16) and (17), which can be re-arranged in a more compact form as outlined below. All other variables
describing the structural behaviour can then be derived.

The following expressions are derived for the behaviour at both time 7y and at time 7 owing to their sim-
ilarities, while the identities d) = 0, §, = | are used, and obviously &y, = 0 for the instantaneous analysis
(y =0). Hence

‘éoy = blyM}, + bz«/NV + b3y$'y + (_blkMCO&) — bZchoéb)B}, + Sh]kSSh (22)

py = rl.,,M), + I”ZyNy + 1”375‘7 + (—Flkoo¢ — ’”2ch0¢)5)7 + Sh2k85h (23)

where M, and N, are calculated based on Eq. (13) and for ease of reference all notation is defined in
Appendix A.

The expressions for the rotation and deflection can then be obtained by integrating the curvature about
the coordinate along the beam length z. Hence,

94.:rly/Mde-f—rzy/Nde-l-r},/S‘»de-i- <—r1k(b/MC()dZ—rzk{l)/NC()dZ-l-SthSshZ)(Nsy+6”

(24)
v, :rl},//M},dzdz—l—rzy//N«,dzdz—i—r.;y//&,,dzdz—i— /C\'Iyz—l— 62.,
+ (—Vlkqb//McodZdZ—rqub//NcodZdZ)Sy+Sh22]’€88h22 (25)

and the strain at the level of the reference axis is determined as

éby = l];,My + 12},N~, + 1375'7 + (—llkMC()éb — lszcoéb)Sy + Sh3k85h (26)

By integrating &, over the beam length, the axial displacement at the level of the reference axis u;, can be
determined as

Upy = 11},/M},d2+Zzy/N},dZﬁ*lg,y/S},dZﬁ* <l]k§b/Mc()dZ IZk(‘b/NcodZ)éy+Sh3k85hZ+Cw
(27)
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7. Structural application

Eqgs. (12) and (21) to (27) form the basis for investigating the instantaneous and the time-dependent
behaviour of composite beams with PI using a variety of end conditions. The use of these equations is illus-
trated in this section for the instantaneous and time analyses of a generic beam subjected to the loading
condition illustrated in Fig. 4; this implies, without any loss of generality, that the expressions for M,
and N, considered are of the second and zero order in z (where z is the coordinate along the beam), so that
from elementary statics

2

M, = —Mq, + Rz — WTZ;

where M,,, Ry, and Ny, are defined in Fig. 4. Expressions for M, and N, of higher orders could be easily
considered, but the derivation would need to be modified accordingly.

Ny = 7N0}, (28&, b)

7.1. Modelling at time t, and at time t

The general method of time analysis for composite beams with PI subjected to the loading conditions
defined in Eq. (28) is outlined in this section. A compact formulation is adopted for this purpose which
has the advantage of highlighting the relevant and unknown terms, which are the coordinate along the
beam length z, the unknown reactions at the left support (z = 0) Ny,, Ro,, My, (as the reactions at the right
support (z= L) Ny, R;,, My, can be determined from elementary statics) and the constants of integration
for the slip expression Cj, and C,, which can be determined once the static and/or kinematic boundary
conditions of the beam are enforced. This method is then applied to the cases of a simply supported beam,
of a fixed ended beam and of a propped cantilever beam subjected to a uniformly distributed load and to
shrinkage deformation, and with the slab undergoing creep.

Based on the loading conditions considered, the expressions for the moment M, and axial force N
resisted by the concrete component required by the analysis at time 7 can be re-arranged for clarity and
to avoid lengthy expressions in the following compact and generic form based on Eq. (13) as

My = ay + axz + 613()22 + ase'” + aspe1* (293)
Ney = aio + a0z + @130 + a1a0e"” + agsoe (29b)
The slip and slip strain can then be expressed as
o,
SV - Clyeu./‘z + szefp,./,z - ?’ (R()y - WZ) + l//l«,, + lpzyz + lp:;ye'uoz + lp4},eiﬂoz (30)
. 1,z —z (XA,,W z —Hpz
s}’ = luyC’l}'e'l T luycz}’e o + T + lpZy + lu()lp:‘?yeﬂo - luolpéh/e o (31)
Moy

Y I I T I I T T

Fig. 4. General single span beam at time #, and at time 7.
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The strain in the top fibre of the cross-section, the curvature, the rotation and the deflection along the beam
can be expressed as

EOV - {_blﬂf"MOV - bz?'NO')' + ﬂ]}’} + {bl"/'RO“/ + ﬁZ‘/ }Z + B}yzz + bSZ)IUyCI‘ye”"Z - b3~,‘l‘yC2ye_”‘f‘z
+ ﬁ4yeuoz + ﬁSveﬂj‘OZ (32)

py, = {_rlyMOy — ryNo, + 517} + {VlyROy + & }Z + 53-)722 + 73,1, Crp€17" — 13,1, Co ™" + &y €1

+ Ese (33)
R \ y _
9 = { r, Mo — szNo + f]}}Z + il by +@ 63 Z’; + r3, Cl;,eﬂ"/'z + 7'3~}YC2~,C “Z 64) eto?
2 2 3 Uy
w4 @, (34)
Ho
_ oMoy mNoy  Su) 5 [reRey & 53, 4o TnCne Ty Cyeh 84y e
“"_{ 2 Tt s te Tt " PR
45 et 4 Cryz+ Coy (35)
0

The strain and the axial displacement at the level of the reference axis are

Epy = {—llyMOy — [,No, + 7]1;7} + {llyRO + 1y }Z + 7733;22 + Ly, Cro €' — I3y, Crpe™* + 1y, €M7

+ n5,e 710" (36)
l "R . Me.uoz
Upy = {_llvMOV — 5N, + ’713/}2 + { 1i2 "+ ’72 }Z i 1733? z + 15,Crye"" + 13, Coe 7 + ’14:“70
e Hoz
5° 1, (37)
Ho

The constants of integration 61.,, 62}, and C,, may then be determined, by applying the kinematic boundary
conditions that v,(z=0) =0, v(z= L) =0 and u;,(z =0) =0, as

~ L I? &L

Cy, = ) (riMo; + ryNo, — ¢1y) — 6 (riRoy + &) — 12 G (38)
-~ r3, 547 + 55))

Cy, = " (Cyy — Cyy) — s (39)
Cop = —13,(Cy, + Cp) — 12 M5 (40)

Ho
where
_ 1
¢, = e [Cry (" = 1) = Coy (7 = )] + = [&y (" — 1) + &5, (67" — 1)] (41)
L oL

In this form, the constants of integration Cj, and Cs, can be prescribed by imposing the static and/or kine-
matic boundary conditions for the relevant beam type, as illustrated in the following sub-sections for a sim-
ply supported beam, for a beam encastré at both ends and for a propped cantilever; the correctness of the
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closed form solutions presented for these structural systems is validated against the results obtained by
means of the direct stiffness method described by Ranzi (2003), which, similarly to the closed form solutions
derived herein, requires only one discretisation (i.e. in the time domain) to perform time analyses based on
the algebraic representation of the concrete rheology. For this purpose, the time-dependent behaviour of the
concrete has been modelled by means of the AEMM method when subjected to external loads (i.e. uniformly
distributed loading) and by means of the MS method to account for shrinkage effects as recommended by
Dezi et al. (1996, 1998). For the comparisons, the composite cross-sectional and material properties utilised
are summarised in Tables 1 and 2, while the results have been plotted for various levels of the dimensionless
stiffness parameter p, L (which is calculated based on the cross-sectional and material properties at time 7);
this term poL (when calculated at time 7y) has been shown by Ranzi et al. (2004b) to be equivalent to the
dimensionless stiffness term «L identified by Girhammar and Pan (1993).

7.2. Simply supported beam subject to a uniformly distributed load and to shrinkage deformation

The reactions at time ¢ for the simply supported beam shown in Fig. 5 are determined from elementary
statics as

wlL

ROk:RLkZT; My =My =0, Nyu=Ny=0 (42a,b,c)
The expressions for the slip and slip strain are then determined using Egs. (30) and (31) where the constants
of integration Cj; and Cy; are calculated applying the boundary conditions that §(z = 0) = —&y, and
S‘(Z = L) = _Esh-

Jado(z) — (g - z> La] (43)

5 = e (2) Jr% Pzﬂoéo(z) + 111} (44)

The strain in the top fibre of the cross-section, the curvature, the rotation and the deflection along the beam
can be determined as

~ wz ~ ~ w T ~
b0k = - (L = z)21p + baepyer(z) + % {Mo@be(}(z) + A4b} + Shikesn (45)
wz x - w ~ ~
O = 5 (L —2) A1y + Faxpyer(z) + A |::u0/13r60 (z) + ;"47':| + Shaiesn (46)
WZ2 = = Wi~ = = ~
Qk = ﬁ (3L — 22)11,, + ngek(Z) + % [)»3,«60(2) + )»4,Zi| + SthSShZ + Clk (47)
Table 1
Composite cross-sectional properties: steel joist and reinforcement
Steel joist Reinforcement
Section 1200WB455 A, 8050 mm?
(Australian section) Location At mid-height of slab
Flange 500 mm x 40 mm E, 210,000 MPa
Web 1120 mm X 16 mm

E 210,000 MPa
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Table 2
Composite cross-sectional properties: concrete component

Concrete component

B 3500 mm Width of slab

D 230 mm Depth of slab

f¢ 32MPa Cylinder compressive strength

E. 27,7783 MPa Elastic modulus of the concrete at 4 days
34,129 MPa Elastic modulus of the concrete at 28 days
38,418 MPa Elastic modulus of the concrete at 10,000 days

s 0.25 Coefficient which depends on the type of cement (s = 0.25 for normal and rapid hardening cements N and R)
to 28 days Age of concrete at loading (days)

tr 10,000 days Age of concrete (days) at the time considered

RH 70% Relative humidity of ambient environment (%)

H 23132 Notational size of member (mm)

ts 4 days Age of concrete (days) at the beginning of shrinkage

Pse 5 Coefficient which depends on the type of cement (S, = 5 for normal and rapid hardening cements N and R)

Creep and shrinkage coefficients

¢o  1.898460% Creep coefficient based on 7, = 28 days and ¢ = 10,000 days
2.229048° Creep coefficient based on 7y = t, =4 days and ¢,= 10,000 days

b4 0.837416* Aging coefficient based on ¢y = 28 days and # = 10,000 days
0.437905° Aging coefficient based on t, = t;, = 4 days and ;= 10,000 days

Note: material properties of the concrete have been calculated in accordance with (CEB-FIB, 1993).
# Calculated to account for creep effects using the AEMM method.
® Calculated to account for shrinkage effects using the MS method.

Fig. 5. Composite beam: simply supported beam.

we s owlkas o eZ| Shaead | s
= 24 (2L - Z))Ll" +'ui:ek(z) +% ,uioe()(z) + 42 +%h + Cz + Co
where
Cuu=15 (BawL?k + 12w, + 125k
k= T g \ M1 Wiy 2kEsh
c ra Y ikptg (14 e4L) + wY o s, (1 + e k)
2% — —

Mg ok
while the strain and the axial displacement at the level of the reference axis are
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~ wz 4 - w . x
Epp = 7(L —z)Au + lyeyer(z) + T [#0/131‘30(2) + MI} + Shsiésn (51)
sz ~ = Wi~ = x
Uppy = ﬁ (3L — 22)111 + l3kek(2) + E |:i31€0(2) + A4[Z:| =+ Sh3k85hZ + Cuk (52)
where

. 131(?](]((67”’% — 1) +W’Yv013](67”0L — 1)
uk — I
The results of the closed form solutions are in exact agreement with those obtained using the direct stiffness

approach as shown in Figs. 6 and 7 for the deflection along a simply supported beam 10 m long subjected to
a uniformly distributed load of 25 kN/m (i.e. its self-weight) and to shrinkage deformation respectively.

(53)

7.3. Encastré composite beam subject to a uniformly distributed load and to shrinkage deformation

Fig. 8 shows a beam encastré at its ends. From the symmetry of its loading and of its support conditions

Ror =Ry = WTL; Moy = —My; Nop=—Nu (54a,b,c)
where Ry, Ny, and My, are the vertical and horizontal reactions and the moment at the right hand sup-
port (z = L) calculated at time ¢.

The shrinkage deformation does not induce any displacements and deformations along the length of the
fixed ended beam. It also produces no stresses in the steel joist and in the reinforcing bars, while it produces
a stress equal to —Eéq, in the concrete component. For this reason, the following expressions describe the

behaviour of the fixed ended beam subjected to the uniformly distributed load only.

Coordinate along beam (m)

0 1 2 3 4 5 6 7 8 9 10
0.0000 & | | | | | . . | |

-0.0002 A

-0.0004

£ -0.0006

-0.0008 -

-0.0010 A

-0.0012 -
-©- uL=1 at time t- CFS -85~ ul=10 attime t- CFS -- =100 at time t- CFS
A~ uL=1 attime t- DSM > ulL=10 at time t- DSM —+— uL100 at time t - DSM

Fig. 6. Variation of the deflection along a simply supported beam subjected to a uniformly distributed load at time ¢ = 10,000 days for
various levels of the dimensionless stiffness coefficient p;L (CFS = closed form solution, DSM = direct stiffness method).
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Coordinate along beam (m)
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-©- ul=1 attime t-CFS 8- 4=10 at time t- CFS —- 41=100 at time t - CFS
A y1=1 attime t- DSM > =10 at time t- DSM —+ =100 at time t - DSM

Fig. 7. Variation of the deflection along a simply supported beam subjected to shrinkage effects at time ¢ = 10,000 days for various
levels of the dimensionless stiffness coefficient pL (CFS = closed form solution, DSM = direct stiffness method).

Mo J HHHHHH¢H¢HHHHHH¢H M

Fig. 8. Composite beam: encastré beam.

Applying the static kinematic conditions that s;(z = 0) =0 and s(z = L) = 0, the constants of integra-
tion Cy; and C»; that are related to the slip and the slip strain can be determined, and the expressions for
the slip and slip strain become

L= % {Lek(z) + Liseo(z) — <§ - z) },14 (55)

w 5o et
= [Lﬂkak(z) ¥ Litgineo(2) + AM] (56)

The strain in the top fibre of the cross-section, the curvature, the rotation and the deflection along the beam
can be determined as

~ A
pebsiei(2) + podneo(z) + = (57)

EOk:K(—L2+6LZ—6ZZ)11b+W—L I

12 k
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. I . Jar
pu= 75 (~L2 + 6Lz = 62) T, + 2 | mera@ule) + poaro(2) + 5 (38)
wz ) N % wL - S Jar ~
0, = E (—L +3Lz— 2z )Alr + 7 r3kek(z) + A3reo(z) + T + Ci (59)
WZ2 ~ wL l”';kék(Z) jf; éo(Z) 14. -~ -~
= (=L’ +2Lz =)}y, +— |— - =2+ C C 60
[ 24 ( + Z Z) 1 + % m m +2LZ + 1kZ+ 2k ( )
where
Cuw == [LYars (et~ 1 Jar (et — 1 1
=7 LY (e — 1) + LY oA (e — 1) (61)
. LY LYo23,
Cy = _ WLk (e +1) + =7 073 (e +1) (62)
k| Ho
while the strain and the axial displacement at the level of the reference axis are:
- w ) N3 wL _ s Jar
bk =15 (—=L* + 6Lz — 62%) Ay, + ya Hlse(z) + poAzieo(z) + A (63)
wz ) N wiL - ~ = ;141
Upp = E (—L —|— 3LZ — 2Z )/L,l[ + 7 l;kek(z) + )»3]60(2) —|— TZ + Cuk (64)
where
Cu=—2 [LY Lye(e ™ — 1) + LYoy (e70F — 1 65
wk =T k3k(e )+ 0~31(€ ) (65)

The values of the moments and of the horizontal reactions at the supports are calculated imposing
0:(z =0) =0 and uy(z = 0) = 0 respectively, which yield
wL?

M()k - _MLk == W (66)

Nox = =Ny =0 (67)

Eq. (66) implies that the points of contraflexure for a beam encastré at both ends are independent of the
value of the shear connection stiffness and are located at the same position as those for a beam with full
shear interaction. This was also shown to be the case by Ranzi et al. (2003) for an instantaneous analysis.

The results obtained using the closed form solutions and the direct stiffness method match exactly as
shown in Fig. 9 for the deflection along a 14 m encastré beam subjected to 25 kN/m (i.e. its self-weight).

7.4. Propped cantilever subject to a uniformly distributed load and to shrinkage deformation

The left hand end of the propped cantilever (z = 0) shown in Fig. 10 is assumed to be fixed while the right
hand end (z = L) is assumed to be a roller support. From statics, the reactions at time ¢ can be expressed as

Rop =wL — Ry; My =0 (68a,b)
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Coordinate along beam (m)
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0.0000 B t ! L L L

-0.0001
-0.0002
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Fig. 9. Variation of the deflection along an encastré beam subjected to a uniformly distributed load at time # = 10,000 days for various
levels of the dimensionless stiffness coefficient py L (CFS = closed form solution, DSM = direct stiffness method).

Z
A
ROk 2z
e
le L N
< 4
Fig. 10. Composite beam: propped cantilever.
wL?

MOk:T_RLkL; No =Ny =0 (68c,d)
and so the expressions for the slip and slip strain are defined once the constants of integration Cix and Cy
are obtained from the kinematic and static boundary conditions that si(z =0) =0 and §;(z = L) = —&,.
Hence,

A ;LlocWZ - jbOoc T oA

S = ek(z) T + 1260(2) (69)

. 2 W}L 2 3

§e = veer(2) + k“‘ + poe0(2) 72 (70)

The strain in the top fibre of the composite cross-section, the curvature, the rotation and the deflection
along the beam can be determined as follows

-~ w ~ ~ W ~ N A ~
Sop = E (LZ — 22>},1b — (L - Z)j.()b + Zﬂqb + b3k,uk€k(2) + /J()eo(z);%b + Shiresn (71)
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w ~ ~ W ~ N A ~

oy = E (LZ _ ZZ))NIV — (L - Z)/L()r + E}qr -+ }"31{/11(81{(2) + /1060(2)23, + Shojeqn (72)
~ 2 ~ ~ ~ o~

Gk = % (3L2 — Zz)ilr — <LZ — ZE) /l()r + %)&4,.2 + r3kék(z) + )»3,@0(2) + SthSShZ + Clk (73)

wz? ~ 72 ~ w o~ P » Dy~ Shoéq ~ ~

v = ﬁ (6[,2 — 22)11}, — g (3L — Z)/L()r + j{/mrzz + Ni:ek(z) + ljo eo(z) + %ZZ + C]kZ + C2k (74)
where

~ L2 5 . AN T S5wL\  Shyeql Wiyl -~

Cu = ?(_rlk(/)i’ﬂl — 1o (pmy) (Roo - T) +—1k3 < 0k —T> - 23 i 22 + /s (75)

O = 1y, Ciu—Cou T Cio— Cx (76)

Hye Ho

while the strain and the axial displacement at the level of the reference axis are

~ w 3 3 W 2 2 5

Ep = 5 (LZ — 22)/L11 - (L — Z)/lo[ -+ E}q/ + 13/(‘1,11(61{(2) + ,Ltoeo(Z))g/ + Shsieqn (77)

~ 2 ~ ~ ~

Upr = % (3L2 — Zz>ﬂ” — (LZ — %) }v()[ + %/{412 + l3kék(z) + 23[@0(2) + Sh3k85hZ + Cuk (78)
and

Cu = _l3k(61k + E’2/;) - 131(610 + E’20) (79)
The value of the reaction at the fixed support (z = 0) is calculated using 6(z = 0) as

Lyt gkl + 12wy, L2 )
Rop = My lokte + L2WA4. L7y pg + 47 (80)

Sﬂok{L3#k’”1k + 3ry Cpe 2l (Lity, — et 4 1) 4 3ry C oo (Lpy, + e 1k — 1)}

As for the previous structural systems, the derived closed form solutions and the direct stiffness method
yield identical results; this is shown in Figs. 11 and 12 for the deflection of a 12 m propped cantilever sub-
jected to a uniformly distributed load of 25 kN/m (i.e. its self-weight) and to shrinkage deformation
respectively.

8. Conclusions

This paper has proposed a generic modelling for the time-dependent analysis of composite steel—
concrete beams with partial shear interaction for which both creep and shrinkage effects have been ac-
counted for. The composite cross-section has been assumed to be formed by a steel joist, a shear connec-
tion and a reinforced concrete slab; the steel joist, the reinforcement and the shear connection are
assumed to behave in a linear-elastic fashion, while the concrete component is assumed to be time-depen-
dent and its behaviour is modelled using methods (i.e. AEMM and MS methods) that lend themselves to
algebraic representation.

The model can be applied to the analysis of continuous beams subjected to generic loading conditions.
The application of this model for the time analysis of simply supported beams, encastré beams and propped
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Fig. 11. Variation of the deflection along a propped cantilever beam subjected to a uniformly distributed load at time # = 10,000 days
for various levels of the dimensionless stiffness coefficient 1 L (CFS = closed form solution, DSM = direct stiffness method).
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Fig. 12. Variation of the deflection along a propped cantilever beam subjected to shrinkage effects at time 7 = 10,000 days for various
levels of the dimensionless stiffness coefficient p; L (CFS = closed form solution, DSM = direct stiffness method).

cantilever beams has been illustrated when subjected to uniformly distributed loading and shrinkage defor-
mations. Various representations of the structural behaviour of these beams have been expressed in closed
form. The accuracy of the results obtained using these closed form solutions has been validated against
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results obtained by means of the direct stiffness method. It was shown that the results obtained using the
closed form solutions and the direct stiffness method are in exact agreement. Whilst being too complex for
hand calculations, the closed form solutions may be programmed readily so that the influence of the various
parameters that affect the behaviour of composite beams can be investigated. These can also be used to
benchmark other modelling techniques, i.e. based on the finite element method or finite difference method,
which require two discretisations to accomplish a time analysis, i.e. a spatial one along the beam and one in
the time domain.

Appendix A

A, A,, A; = area of the concrete component, of the reinforcement and of the steel joist respectively.

AEI;,:AC[EC—i-(Ee—EC)SV + AEy; AEy = AE; AE, = AE,, + AE,,

~ ~ ~ wolg ~ ~ w ~
ayp = —¢ Mo — ¢2Noo + (15137; ax) = ¢ Roo;  az = —¢y 5 da = $1314C1o0

~ ~ ~ ~ W ~ ~ W
as) = —Pi3149Ca0; a0 = =Py Moo — $2Noo + ¢237; aiy = ¢y Roo; a0 = —¢y 5
aig0 = P3ityCros  ais0 = —Pa3igCoo

B., B,, By = first moment of area of the concrete component, of the reinforcement and of the steel joist
respectively.

BE,, = B. [Ec + (E. — E.)0,| + B.E:; BE,, = B,E,;, BE,=BE,, + BE,,

BE, + y,AE, voBE, + IE,
by=—-—"—""""2 by="T—7""7-=23
AE,IE, — BE, AE,IE, — BE,

BE?BEZ}, + Yo (BEQ«/AE” — BE]}'AEZ;Y) — AEzylEy
by, =

v

~ ~ ~2
AE,IE, — BE,
C9, Cyo = constants of integration for the slip and slip strain at time ¢,

OC()C?/IOL ,uOR()oeiMOL -w_ o~ oo ,uOROO + weHol

E - N C =
O Tk, 1+ el 0k 1 He 2wl

Ci = Coe ¥ Ry + Cae 2 — Ca; Coy = CoRy + Ca + C3

éshei'u’(Lk — we ML (060/12 — j-loc)

k(1 e 20l

~ —Roo (06022 + oy pmy + szk(??mz) ~ o ~
Ca= ; Co=7—7—; Ca=
k(1 4 e2ul) k(1 + e2ul)

E., E., E,, E; = age-adjusted effective modulus, elastic moduli of the concrete component, of the reinforce-
ment and of the steel joist respectively.

e,(z) = )N’.,, (e“‘vLe":’z + e‘“"fz); é/(z) = )7.,, (e"‘v'Le“v'z - e‘“‘fz)



3790 G. Ranzi, M. A. Bradford | International Journal of Solids and Structures 43 (2006) 3770-3793
e,(z) = Y, (e7the +e); g(z) =Y, (e e — e )

&,(z) = Cpe” + Coe ™ &,(z) = Crye* — Coe

o

~ W ~
f]y(Papsh) =P3 (lpZy + }c ) _pl;vél"/ _pz;vélly + Dghéshs ny(pvpsh) = _pIy52}’ _p2y512y

~ w ~
f3y(p7psh) =Py 35 _P1~,~53y _Pz;r513v§ f4~,~(PaPsh) = P3yﬂ0‘ﬁ3~y _P1y54v _Pz;v514v

fSy(P’psh) = —P3~,vl10‘ﬁ4«,- —P1755v _P275157

I, I, I, = second moment of area of the concrete component, of the reinforcement and of the steel joist
respectively.

IE,, =1, [E V (B.— E)3,| + LEs; IEy =I,E; IE, =1E, +IE,,
liy = by +yor1ys Loy = bay +yoray; I3y = by +yors, + 1, Shay, = Ski + ySha
My, = moment at the left end of the beam at time ¢,

my = Qerobio + Peaor10; M2 = Pe3obio + Peagrio

Nyo = horizontal reaction at the left end of the beam at time ¢,

n1 = Qerobio + Peag30; M2 = Pe30b30 + Peagh30

BE 0AE~ — BEAE o AE0[Ey — BE 0BE,
910 = ~ = = 5 = ~ =
AEIE, — BE, AEIE, — BE,
BE  AEy + BEsWAE ) — 1EoAE 10AE
q3 = — = =
AEIE, — BE,
BE]kAEZk—BEZkAElk AE]kIEk —BElkBEk
91 = — = — sy = ~ = —
AEIE, — BE, AEIE; — BE,
BE?kAEQk + BE;AEU{ - ]EkAEIkAEZk AEzkIEk — BEZkBEk
93 = s Quy = —

~ ~ ~2 ~ ~ =2
AEIE, — BE, AEE, — BE,

Ry = vertical reaction at the left end of the beam at time ¢,

R SwL (el +1) [S,uéLz + 1201 (3L — 2)] + 481,eHok
“T 8 U SuL[(Bitg + 1)(1+ e b gL + 3jig (e — 1)]
AE, ~BE,
Ty ray r3; =0,

' AEJE,—BE. ~  AEJE,-BE.
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(IEk n yOBEk)ACEe — (BEk + yOAE"k)BcEe o AEBE -~ BEAL,
5 2%k =

Shyy =

AEJE, — BE, AEJE, — BE,

BEBE», — IEAE BE AEy — AE BE

Shy = Skix + yoSha;  Shyy = ——— k~2 KA E + 2 lfz % B.E.
AEJE, — BE, AEJE, — BE,

1 ~ oo 1 0, — 0605»2, >

Yg=—— 0 Vy=—— 0 . _ Mg — H042 _Wj-loc_wocOZZ'i_éshk
0 0T el 41 TF T 2 eml o1

pyk (et + 1)

=

T2eml o1

~2 o~ ~2 o~ ~ o~ ~ ~ ~ ~ ~
BE| AE>, + BE, AE\, — IE,AE,AE>, BE,AE>, — BE»,AE,,
- oy =

&y = ~ = - 5 ~ ~ P
AEIE, - BE AEIE, - BE,
AE\IE, — BE\,BE, AEyIE;, — BEyBE;
oAy = = 5 O = — = —
AEIE, - BE, AEIE, — BE,

By, = o (byShy) with i =1,...,5

y =0, k at time 7, and at time ¢ respectively.

iy = Gand, (withi=1,...,5and i=11,...,15); 0y =0; & =

- AE.
Esh = —=&nh
1k

7’]1-4/. :f[y(laShSk) with i = 1, ey 5
Jox = aRox — (o pmy + OC2k(?)mz)ﬁoo; Jor = xR — (x1xPmy +x2k¢m2)k00
Zla = 0 — 0 PM| — o PNy, le = X1} — X1, QM| — X P12

7, = 5 0 PRy + Ol PRy e = e - ~
2= Mo =3 5 Mx = Xl — Xip PRy — XNy
O 1y — k

;14x = x;kj.m — o9 @ x4y + xmp) where x; (with i = 1,2, 3) represents a generic variable

~ E’lk(e“kL — 1) — E'Zk(e’“kL — 1) ~ 610(6“01‘ — 1) — 620(67“01‘ — 1)
As = —T3 — A3
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— 24I’3k 6“ (l + 672/1"1‘)
17 = 2413;-]6/1/{ [610 (e“OL - 1) - 620 (e”‘OL — 1)]

+ 243k {(6316*2/@ _ 653) (et —1) — (E‘Sl + 633) (et — 1)]
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